Note

The crystal structure of di-D-fructose anhydride III, produced by inulin D-fructotransferase

TOMOHIKO TANIGUCHI

Department of Physics, Osaka Kyoiku University, Tennoji-ku, Osaka 543 (Japan) AND TAKAO UCHIYAMA

Department of Biology, Osaka Kyoiku University, Tennoji-ku, Osaka 543 (Japan)
(Received January 25th, 1982; accepted for publication, March 9th, 1982)

Di-D-fructose anhydride III has been isolated as a by-product of the acid hydrolysis of inulin¹, and identified as di-D-fructofuranose 2',1:2,3'-dianhydride² (1). In later studies, Tanaka and Uchiyama³⁻⁵ showed that inulin D-fructotransferase (EC 2.4.1.93) of Arthrobacter ureafaciens produces di-D-fructose anhydride III from inulin in high yield. Recently, the dianhydride was assigned the structure α -D-fructofuranose β -D-fructofuranose 2',1:2,3'-dianhydride by a carbon-13 nuclear magnetic resonance study⁶, but the molecular conformation was not established. We now report the X-ray structure of the dianhydride.

EXPERIMENTAL

Difructose anhydride III was prepared from an inulin culture-medium of A. ureafaciens⁷. After two recrystallizations from 95% (v/v) ethanol, colorless prismatic crystals were obtained; m.p. 162°, $[\alpha]_D^{20} + 136$ ° (c 1.98, H₂O). The space group was determined from preliminary, Weissenberg photographs. Crystal data are: a = 16.438(2), b = 10.483(2), c = 8.0928(7) Å, space group $P2_12_12_1$, Z = 4. The measured and calculated crystal densities are $D_m = 1.548$ mg/m³, and $D_c = 1.544$ mg/m³. A

crystal of size $0.25 \times 0.3 \times 0.4$ mm³ was used for data collection on a Rigaku C-4R diffractometer, with graphite-monochromated MoK α radiation. Cell dimensions were determined by least-squares calculations with 2θ values of 22 reflections measured on the diffractometer. Intensity data of 2156 reflections with $2\theta \le 58^{\circ}$ were collected by use of the $\omega - 2\theta$ mode, with a scanning rate of 8° .min⁻¹ in 2θ . The number of observed reflections, $F_0 > 2\sigma(F_0)$ is 2034. The data were corrected for Lorentz and polarization factors, but not for absorption.

The structure was solved with MULTAN78⁸. The E map revealed all the non-hydrogen atoms. After the block-diagonal, least-squares refinements⁹ with anisotropic thermal parameters, all of the hydrogen atoms were located on a difference synthesis. The positional parameters for the hydrogen atoms were included in the refinements, with a fixed, isotropic, thermal parameter, $B = 2.5 \text{ Å}^2$. The least-squares function refined is in the form $\Sigma w(|F_0| - k|F_c|)^2$. A weighting scheme of the type $w = 1 - \exp[-15s^2]$ with $s = \sin\theta/\lambda$ was used. The final R value was 0.063. The positional parameters are given in Table I*, the bond lengths and angles in Table II, and

TABLE I POSITIONAL PARAMETERS ($\times\,10^4$; for hydrogen atoms, $\times\,10^3$)

Atom	х	y	Ξ	Atoms	х	у	Ξ
O-1	3296(2)	-323(3)	7242(4)	HO-3	253(4)	-368(6)	779(9)
O-2	3505(2)	-2059(3)	3458(4)	HO-4	180(4)	-474(6)	468(9)
O-3	2498(2)	-3146(3)	7090(4)	HO-6	309(4)	-246(6)	-108(9)
O-4	2142(2)	4704(3)	3884(4)	HC-11	311(4)	-18(6)	471(8)
O-6	3250(2)	-2358(3)	-9(4)	HC-12	244(4)	-96(6)	597(9)
C-1	3000(2)	-796(3)	5721(6)	HC-3	334(4)	-397(6)	593(9)
C-2	3430(2)	-2035(3)	5203(5)	HC-4	199(4)	-284(6)	405(8)
C-3	2957(2)	-3261(3)	5632(5)	HC-5	340(4)	-381(6)	222(9)
C-4	2441(2)	-3446(3)	4086(5)	HC-61	230(4)	-329(6)	43(9)
C-5	3040(2)	-3089(3)	2740(5)	HC-62	235(4)	-187(6)	147(8)
C-6	2639(2)	-2628(4)	1207(5)	HO-1'	412(4)	-94(6)	1039(9)
O-1'	4436(2)	-624(3)	9915(5)	HO-4'	577(4)	-101(6)	335(9)
O-2'	4142(2)	1203(2)	6124(4)	HO-6'	469(4)	349(6)	433(9)
O-3'	4202(2)	-2118(2)	5979(4)	HC-11'	492(4)	72(6)	865(9)
O-4'	5752(2)	-548(3)	4232(4)	HC-12'	399(4)	106(6)	911(9)
O-6'	4329(2)	3147(3)	3635(5)	HC-3'	507(4)	-115(6)	708(8)
C-1'	4392(3)	416(4)	8831(5)	HC-4'	458(4)	-58(6)	385(8)
C-2'	4113(2)	74(3)	7107(5)	HC-5'	522(4)	150(6)	568(9)
C-3'	4632(2)	-936(3)	6189(5)	HC-61'	494(4)	169(6)	246(10)
C-4'	4915(2)	-292(4)	4589(5)	HC-62'	404(4)	146(6)	272(9)
C-5'	4779(2)	1135(3)	4911(5)		- (-)		
C-6'	4515(3)	1826(4)	3369(6)				

^{*}Lists of the anisotropic thermal parameters for non-hydrogen atoms, the least-squares best planes, and the observed and calculated structure factors are deposited with and can be obtained from: Elsevier Scientific Publishing Company, BBA Data Deposition, P.O. Box 1527, Amsterdam, The Netherlands. Reference should be made to No. BBA/DD/222/Carbohydr. Res., 107 (1982) 255-262.

TABLE II

BOND LENGTHS^a AND ANGLES^a

Atoms	Length (Å)	Atoms	Length (Å)
C-1-0-1	1.414	C-1'-O-1'	1.401
C-2-O-3'	1.417	C-2'-O-1	1.410
C-2-O-2	1.418	C-2'-O-2'	1.428
C-3-O-3	1.406	C-3'O-3'	1.437
C-4-0-4	1.416	C-4'-O-4'	1.431
C-5-O-2	1.445	C-5'-O-2'	1.437
C-6-O-6	1.434	C-6'-O-6'	1.434
C-1-C-2	1.538	C-1'-C-2'	1.512
C-2-C-3	1.542	C-2'-C-3'	1,548
C-3-C-4	1.524	C-3'-C-4'	1,533
C-4-C-5	1.516	C-4'-C-5'	1,534
C-5-C-6	1.486	C-5'-C-6'	1.507
	Angle	•	Angle
	(degrees)		(degrees)
O-1-C-1-C-2	112.0	O-1'-C-1'-C-2'	114.2
C-1-C-2-C-3	114.3	C-1'-C-2'-C-3'	116.0
C-1-C-2-O-2	109.0	C-1'-C-2'-O-2'	107.9
O-2C-2-O-3'	111.3	O-2'-C-2'-O-1	108.6
O-2-C-2-C-3	104.7	O-2'-C-2'-C-3'	106.3
C-1-C-2-O-3'	110.0	C-1'-C-2'-O-1	106.7
C-3-C-2-O-3'	107.5	C-3'-C-2'-O-1	111.1
C-2-C-3-C-4	101.7	C-2'-C-3'-C-4'	105.8
C-2-C-3-O-3	112.8	C-2'C-3'O-3'	112.1
C-4-C-3-O-3	113.7	C-4'C-3'O-3'	115.4
C-3-C-4-C-5	101.4	C-3'C-4'C-5'	104.0
C-3-C-4-0-4	114.0	C-3'-C-4'-O-4'	112.3
C-5-C-4-O-4	111.9	C-5'-C-4'-O-4'	111.0
C-4-C-5-C-6	113.1	C-4'C-5'C-6'	111.7
C-4-C-5-O-2	103.8	C-4'C-5'-O-2'	105.7
C-6-C-5-O-2	109.1	C-6'-C-5'-O-2'	109.4
C-5-C-6-O-6	109.0	C-5'-C-6'-O-6'	113.7
C-2-O-2-C-5	111.6	C-2'-O-2'-C-5'	111.3
C-1-O-1-C-2'	111.3	C-3'-O-3'-C-2	116.1

^aThe e.s.d. values for the bond lengths and angles are in the ranges of 0.005-0.006 Å and 0.3-0.4°, respectively.

the conformation angles in Table III. The computations were made on an ACOS-700 computer of the Crystallographic Research Center, Institute for Protein Research, Osaka University, and on an ACOS-900 computer of the Computation Center of Osaka University.

DISCUSSION

The molecular conformation of the dianhydride is shown in Fig. 1; in numbering the carbon and oxygen atoms, those of D-fructose 1 are unprimed, and those of D-

TABLE III
SELECTED CONFORMATION ANGLES®

Feature	Angle (degrees)	Feature	Angle (degrees)
(a) Ring of D-fructose 1		(d) Other angles of interest	
C-5-O-2-C-2-C-3	7.2	C-1-C-2-C-3-C-4	89.5
O-2-C-2-C-3-C-4	-29.4	C-1-C-2-C-3-O-3	-32.7
C-2-C-3-C-4-C-5	40.0	C-1-C-2-O-2-C-5	-115.5
C-3-C-4-C-5-O-2	-36.3	O-3'-C-2-C-3-C-4	-148.1
C-4-C-5-O-2-C-2	18.6	O-3'-C-2-C-3-O-3	89.8
		O-3'-C-2-O-2-C-5	123.0
(b) Ring of D-fructose 2		C-6-C-5-C-4-C-3	-154.5
C-5'-O-2'-C-2'-C-3'	-14.6	C-6-C-5-O-2-C-2	139.4
O-2'-C-2'-C-3'-C-4'	-2.5		
C-2'-C-3'-C-4'-C-5'	17.0	C-1'-C-2'-C-3'-C-4'	-122.4
C-3'-C-4'-C-5'-O-2'	-25.7	C-1'-C-2'-C-3'-O-3'	111.0
C-4'-C-5'-O-2'-C-2'	25.8	C-1'-C-2'-O-2'-C-5'	110.4
		O-1-C-2'-C-3'-C-4'	115.5
(c) 1,4-Dioxane ring		O-1-C-2'-O-2'-C-5'	-134.3
O-1-C-1-C-2-O-3'	-23.2	C-6'-C-5'-C-4'-C-3'	-144.5
C-1-C-2-O-3'-C-3'	-35.6	C-6'-C-5'-O-2'-C-2'	146.2
C-2-O-3'-C-3'-C-2'	54.2		
O-3'-C-3'-C-2'-O-1	-11.0	O-6-C-6-C-5-C-4	-177.9
C-3'-C-2'-O-1-C-1	-46.4	O-6-C-6-C-5-O-2	67.1
C-2'-O-1-C-1-C-2	66.3	O-1'-C-1'-C-2'-C-3'	-57.6
C-1-C-2·····C-3'-C-2'	15.3	O-1'-C-1'-C-2'-O-2'	-176.8
C-2-C-1·····C-2′-C-3′	15.9	O-1'-C-1'-C-2'-O-1	66.7
		O-6'-C-6'-C-5'-C-4'	176.1
		O-6'-C-6'-C-5'-O-2'	59.4

^aThe torsion angle A-1-A-2-A-3-A-4 is viewed along A-2-A-3, with clockwise rotation of A-1 to A-4 taken to be positive. The e.s.d. is $\sim 0.5^{\circ}$.

fructose 2 are primed. As shown in Fig. 2, D-fructoses 1 and 2 are respectively the α and β anomer of D-fructofuranose. The conformations of the moieties in the molecule are as expected, with two puckered furanose rings and a 1,4-dioxane ring fused onto the furanose ring of D-fructose 2. The 1,4-dioxane ring also connects with the ring of D-fructose 1 at the anomeric carbon atom (C-2) in a spiro arrangement. The ring of D-fructose 1 has the 4T_3 conformation, with C-4 displaced by 0.469 Å on the endo side of the plane through atoms C-2, C-5, and O-2, and with C-3 displaced by 0.186 Å on the opposite side. The same type of puckering was found in the β -D-fructofuranose moieties of raffinose $[O-\alpha$ -D-galactopyranosyl- $(1\rightarrow 6)$ - α -D-glucopyranosyl β -D-fructofuranoside]¹⁰ and melezitose $[O-\alpha$ -D-glucopyranosyl- $(1\rightarrow 3)$ - β -D-fructofuranosyl α -D-glucopyranoside]¹¹. The D-fructose 2 moiety has the 4T_5 conformation, not previously observed in any structure of molecules having D-fructofuranosyl components. The C-5' and C-4' atoms are displaced by 0.338 and 0.064 Å respectively on the opposite sides of the plane through the atoms C-2', C-3' and O-2'.

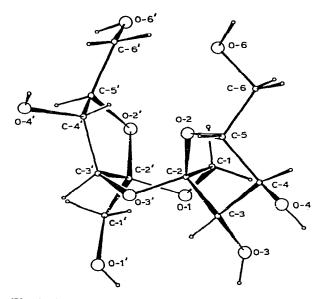


Fig. 1. A perspective view of the molecule of di-D-fructose anhydride III, with the atomic numbering.

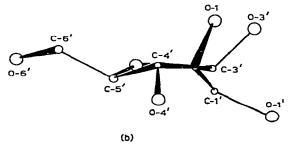


Fig. 2. Comparison of conformations of the two p-fructofuranose moieties, showing puckering and configurations. [(a) p-Fructose 1, and (b) p-fructose 2.]

The 1,4-dioxane ring has a skew conformation, as found in the dimer of dehydro-L-ascorbic acid¹². The dihedral angle between the planes C-3', O-3', C-2 and C-1, O-1, C-2' is 91.3°, slightly larger than the corresponding 85.1° angle in dehydro-L-ascorbic acid. The pseudo-torsion angles of C-1-C-2···C-3'-C-2' and C-2-C-1···C-2'-C-3' are 15.3 and 15.9°, respectively (see Table III). These angles are smaller than the corresponding angles of 19.7° in dehydro-L-ascorbic acid.

The anomeric C-O and exocyclic C-C bonds for D-fructoses 1 and 2 have the characteristic orientations of the α and β anomer of D-fructofuranose, respectively. The conformation angles of O-3'-C-2-C-3-C-4 and C-1-C-2-C-3-C-4 for D-fructose 1 are -148.1 and $+89.5^{\circ}$, respectively (see Table III). The corresponding angles for D-fructose 2 are +115.5 and -122.4° , respectively. The primary alcohol groups about exocyclic C-C bonds have the most favored form of noneclipsing orientation. The

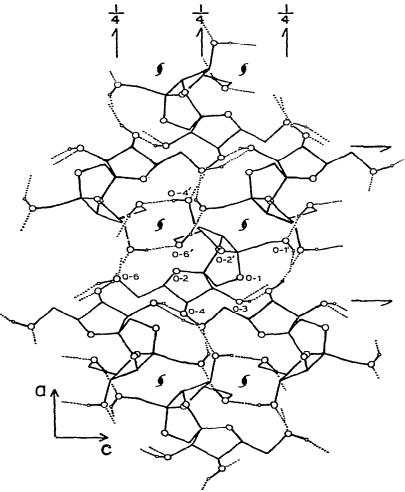


Fig. 3. Molecular packing and hydrogen bonding, viewed along the b axis. (The hydrogen atoms of the hydroxyl groups are shown as small, open circles.)

TABLE IV

HYDROGEN-BOND DISTANCES AND ANGLES

	O···O (Å)	O–H (Å)	H···O (Å)	O-H···O (degrees)	Symmetry operation ^a
O-6'-HO-6'···O-1'	2.676	0.89	1.82	161	656.4
O-1'-HO-1'···O-6	2.667	0.73	2.10	137	556.1
O-6-HO-6···O-3	2,779	0.91	1.91	158	554.1
O-3-HO-3O-4	2.746	0.80	1.98	159	545.2
O-4-HO-4···O-4′	2,761	0.86	1.96	156	446.3
O-4'-HO-4'···O-6'	2.697	0.86	1.84	171	645.4

^aThe symmetry operation is performed on the acceptor oxygen-atoms. The first three digits specify the lattice translations. The last digit indicates one of the following symmetry operations: (1) x, y, z; (2) 1/2 - x, -y, 1/2 + z; (3) 1/2 + x, 1/2 - y, -z; (4) -x, 1/2 + y, 1/2 - z (e.g., 645.4 is a - b from 555.4). The e.s.d. values for O···O, O-H, H···O, and O-H··· are \sim 0.005, 0.07, and 0.07 Å, and 7°, respectively.

C-1'-O-1' bond about the C-1'-C-2' bond is *trans*, *gauche*⁺ and *gauche*⁻ to the C-2'-O-2', C-1'-O-1 and C-2'-C-3' bonds, respectively. The C-6-O-6 (or C-6'-O-6') bond is *gauche*⁺ to C-5-O-2 (or C-5'-O-2') and *trans* to C-5-C-4 (or C-5'-C-4').

The C-C and C-O bonds (see Table II) are in the range 1.486–1.548 and 1.406–1.445 Å, respectively, which agree well with the values found in D-fructo-furanose moieties of the other oligosaccharides (1.489–1.554 Å for C-C and 1.390–1.463 Å for C-O). The shortest C-5-C-6 bond (1.486 Å) is 0.038 Å shorter than the mean C-C bond (1.524 Å). The shortening of this bond may be affected by the anomeric disproportion reported by Rohrer¹³. The C-5-O-2 bond is 0.027 Å longer than the C-2-O-2 bond. The same type of anomeric disproportion in D-fructose 2 is not significant; the difference between C-2'-O-2' and C-5'-O-2' is 0.009 Å, and the shortening of C-5'-C-6' is 0.017 Å from the mean C-C bond.

The molecular packing and hydrogen-bond scheme are shown in Fig. 3, and the hydrogen-bond distances and angles are given in Table IV. The hydrogen bonding consists of infinite, helical chains extending along the two-fold screw-axes parallel to the b axis, consisting of O-6'-H (555.1) \rightarrow O-1'-H (656.4) \rightarrow O-6-H (655.4) \rightarrow O-3-H (656.4) \rightarrow O-4-H (546.3) \rightarrow O-4'-H (555.1) \rightarrow O-6'-H (645.4) \rightarrow . These are all strong bonds, with O···O distances ranging from 2.667 to 2.779 Å. Pairs of hydroxyl groups take part in the two intermolecular hydrogen-bonds, one as a donor, and the other as an acceptor. The endocyclic atoms O-1, O-2, O-2', and O-3' are not included in the hydrogen-bond system.

ACKNOWLEDGMENTS

The authors thank Prof. M. Kakudo and Dr. N. Yasuoka of the Institute for Protein Research, Osaka University, for making available to us the X-ray diffractometer used for data collection.

REFERENCES

- 1 R. F. JACKSON AND E. J. McDonald, Bur. Stand. J. Res., 6 (1931) 709-715.
- 2 E. J. McDonald and R. F. Jackson, J. Res. Natl. Bur. Stand., 24 (1940) 181-204.
- 3 K. TANAKA, T. UCHIYAMA, AND A. ITO, Biochim. Biophys. Acta, 284 (1972) 248-256.
- 4 T. UCHIYAMA, S. NIWA, AND K. TANAKA, Biochim. Biophys. Acta, 315 (1973) 412-420.
- 5 T. UCHIYAMA, Biochim. Biophys. Acta, 397 (1975) 153-163.
- 6 T. UCHIYAMA, Carbohydr, Res., 101 (1982) 138-140.
- 7 E. SHIRASAWA, T. UCHIYAMA, AND K. TANAKA, Hakko Kopaku Zasshi, 52 (1974) 164-170.
- 8 P. Main, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declerco, and M. M. Woolfson, MULTAN78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, University of York, England, and Louvain, Belgium, 1978.
- 9 T. ASHIDA, HBLS-V, The Universal Crystallographic Computing System-Osaka, the Computation Center of Osaka University, 1979, pp. 53-59.
- 10 H. M. BERMAN, Acta Crystallogr., Sect. B, 26 (1970) 290-299.
- 11 D. AVENEL, A. NEUMAN, AND H. GILLIER-PANDRAUD, Acta Crystallogr., Sect. B, 32 (1976) 2598-2605.
- 12 J. Hvoslef, Acta Crystallogr., Sect. B, 28 (1972) 916-923.
- 13 D. C. ROHRER, Acta Crystallogr., Sect. B, 28 (1972) 425-433.